Introduction to Risk Management for Software Projects

Peter Kolb

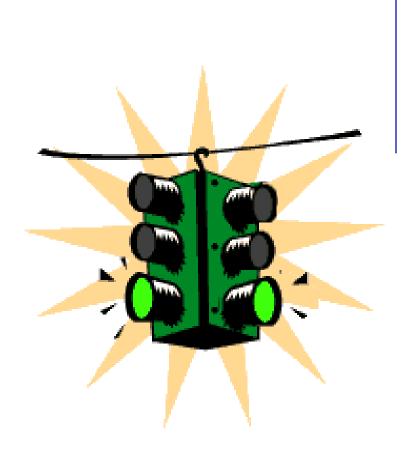
Purpose of Presentation

- To provide an Overview of the Risk Management Process
- To describe Specific Risks with Distributed and Outsourced Software Engineering
- To explain Software Product Risk Management

Objectives of Project Risk Management

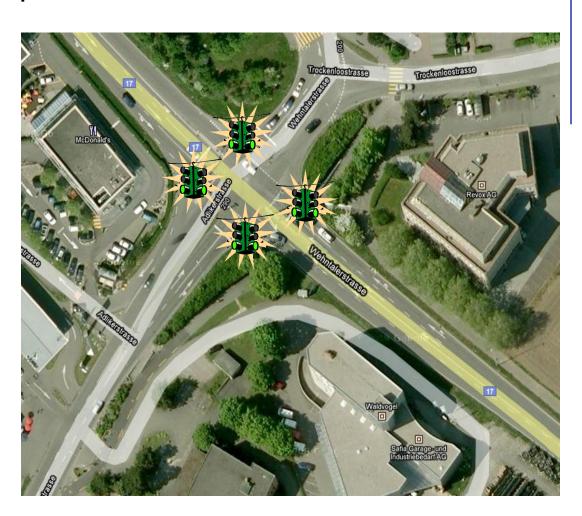
Improve the predictability of a project!

By:


- Raising awareness and visibility of risks
- Managing risks by mitigation actions to prevent major disasters
- Preparing for contingency

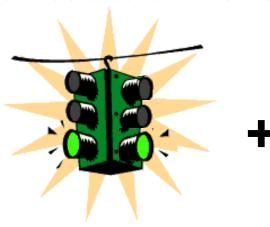
What Is A Risk?

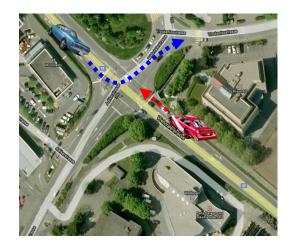
- A Risk is a Potential Event with Negative Consequences that Has Not Happened Yet.
 - However a Risk could also be defined as the event with unforeseen positive consequences.
- A Possibility of Loss Not the Loss Itself!
 - A source of problem during a project
 - Avoid labeling the cost of a risk as a risk (e.g. schedule slippage). Find the causes!
 - Strike at the root of the problem, not the leaves!
- Something that Makes the Project Special
 - In the widest sense everything is a risk
 - There are better ways of handling recurrent problems!


Sequence of Events

1. Failure, cause of hazard

Sequence of Events


2. Hazard [Gefährdung] = potential source of harm



Sequence of Events

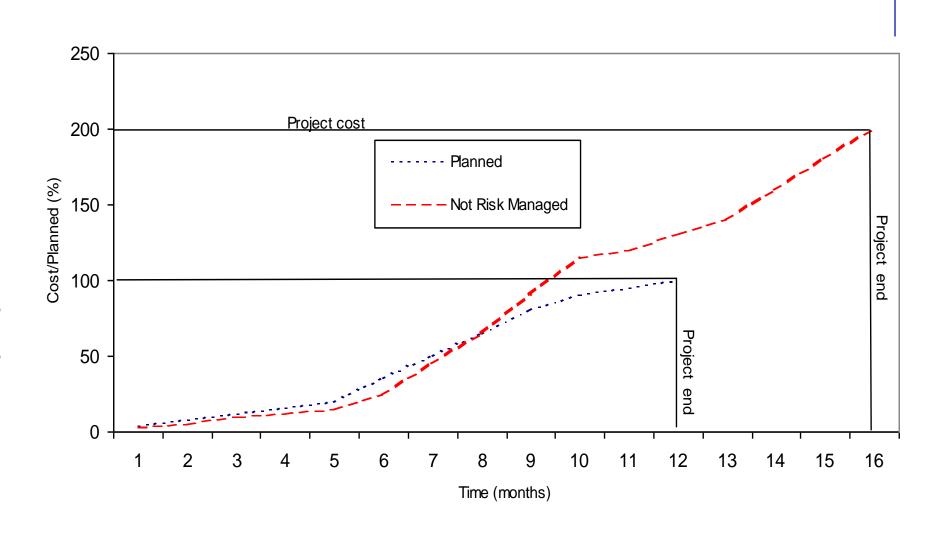
3. Hazardous event

... which has a certain likelihood

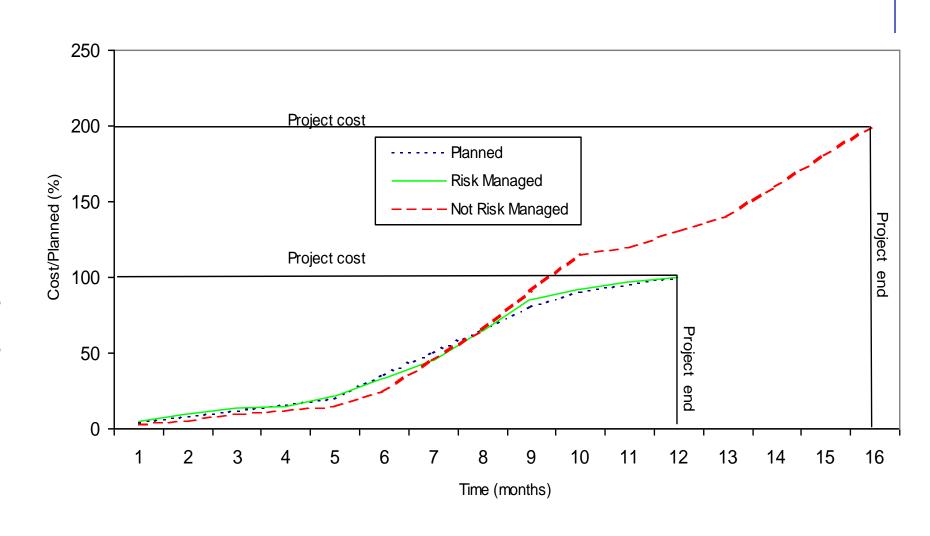
Sequence of Events

4. Harm [Schaden, Unheil]

...which has a certain severity



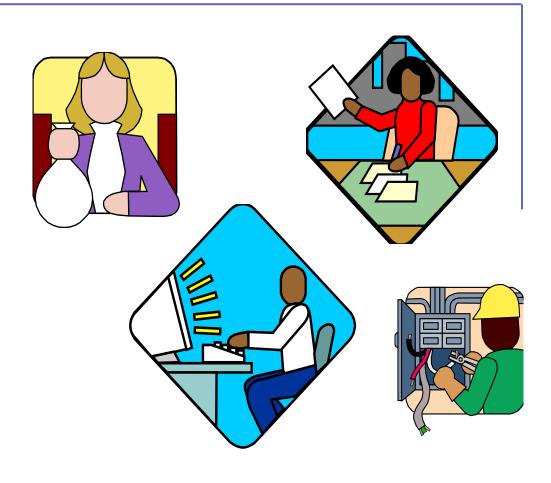
Definition of Risk


Risks are defined by their

- Likelihood of Occurrence of Harm and
- Severity of Harm

Project Predictability

Project Predictability

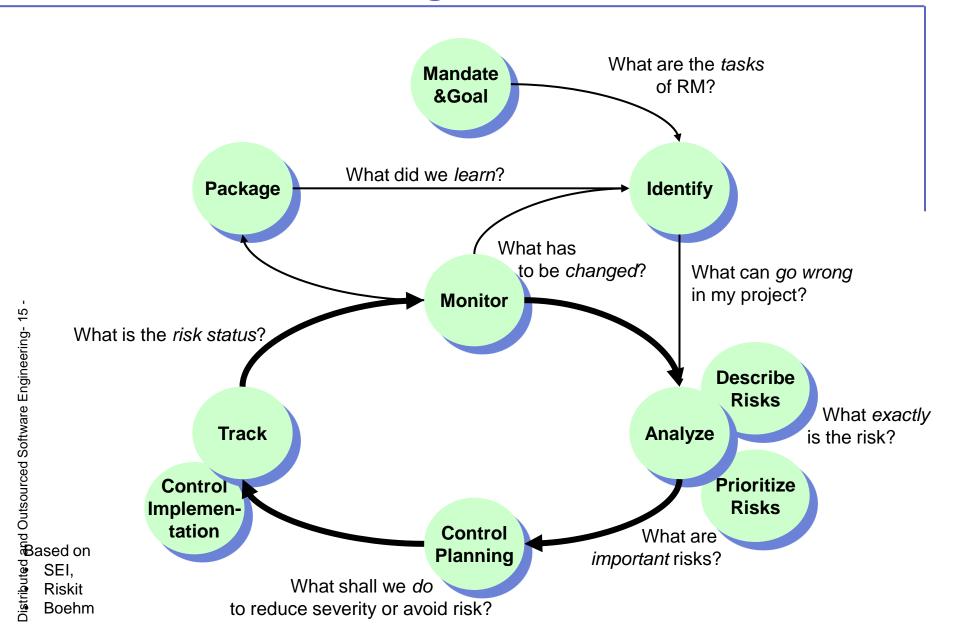


Risk **Description** Windows XP SP xy, ERP system version yz. COTS dependency **Human resources** The availability of human resources from xxx is hard to control since many of the people still have work to do in older projects. Unfortunately, that work has usually a higher priority **Supplier delivery** The outsourced application components may be delayed due to plan execution slippery. time dependency

Is this Risk Management?

Who is involved in Risk Management?

- Customer
- End-user
- Project Team
- Management
- Product Management
- Related Projects
- Subcontractors and Suppliers


Risk Management is Communication!

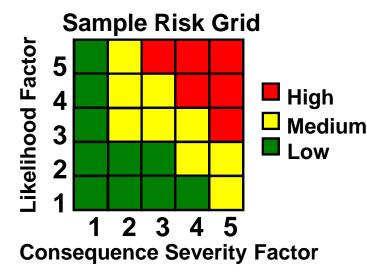
When?

- Business-Case Analysis for Outsourcing
- Preparation for Outsourcing (Partner Selection, Frame Contracts)
- Status and Briefing of Requirements,
- Detailed Contracts and Project Planning
- Milestones in Project Execution
- Transfer and Maintenance

Risk Management is a Continuous Process!

Generic Risk Management Process

Risk Analysis Method


- Describe the Risks
 - Brainstorming potential risks
 - Walkthrough of the risk identification checklist
- Analyze and Prioritize Risks

Walkthrough risk sheet and estimate the probability and cost of

each risk

Calculate risk rating of each risk (e.g. likelihood * consequence)

Prioritize in risk classes concentrate on class "High"

1 - Low 4 - Significant 2 - Minor 5 - High

3 - Moderate

Likelihood

What Is the Likelihood the Risk Will Happen?					
Level		Your Approach and Processes			
1	Not Likely:	Will effectively avoid or mitigate this risk based on standard practices			
2	Low Likelihood:	Have usually mitigated this type of risk with minimal oversight in similar cases			
3	Likely:	May mitigate this risk, but workarounds will be required			
4	Highly Likely:	Cannot mitigate this risk, but a different approach might			
5	Near Certainty:	Cannot mitigate this type of risk; no known processes or workarounds are available			

Severity of Consequence / Harm

Level	Technical	Schedule	Cost
1	Minimal or no impact	Minimal or no impact	Minimal or no impact
2	Minor perf shortfall, same approach retained	Additional activities required; able to meet key dates	Budget increase of less than 1%
3	Mod perf shortfall, but workarounds available	Minor schedule slip; will miss need date	Budget increase of less than 5%
4	Unacceptable, but workarounds available	Program critical path affected	Budget increase of less than 10%
5	Unacceptable; no alternatives exist	Cannot achieve key program milestone	Budget increase of more than 10%

Risk Mitigation and Contingency Planning

- List Mitigation Actions
 - Start with most severe risks
 - List possible actions to reduce probability and/or cost
 - Some risks can be avoided (e.g. avoid a specific requirement)
- Contingency Planning
 - Only for the most severe risks that cannot be mitigated
 - List actions to take should the risk materialize

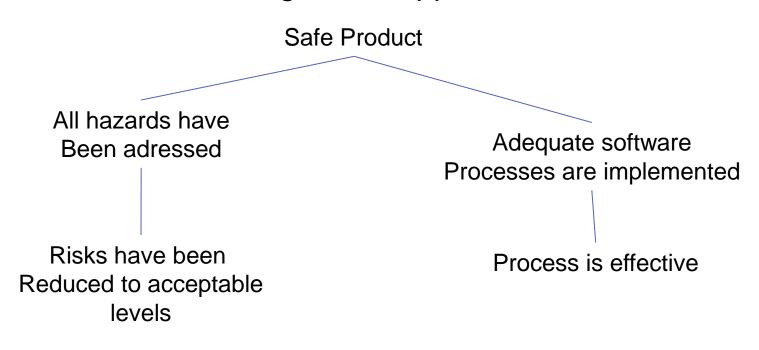
Monitor

- Risks identified as "High" are tracked at the Program Level. The status of each step in the risk reduction plan is updated and reported at the regularly scheduled reviews by the Project Manager.
 - Actions are initiated as required where risk reduction plan activities are not being accomplished.
 - Special briefings of program risks to program management will also be scheduled as needed.
- "Medium" Risks are monitored on Project Management level.
- Re-Assess Risks regularly:
 - Where the taken risk control measures successful? i.e. Likelihood and damage of controlled risks reduced?
 - Did the risk control measures introduce new risks?
 - Additional other risks identified?
 E.g. through early evaluation with customers. Analyze them.

Supplier Selection Risk Factors

- Supplier selection process / criteria
- Supplier capability evaluation
- Executive (or customer) influence on selection
- Number of supplier candidates
- Selection process documentation

	Risk Factors	Low Risk Cues	Medium Risk Cues	High Risk Cues				
-	Supplier Selection Risk Factors							
1	Supplier	organization weighs	organization advocates	organization expects low cost				
	selection criteria	technical, process and	mitigating technical and	supplier will be selected				
		cost implications when	process related risks					
		selecting supplier	while selecting low cost					
2	Supplier	potential suppliers'	supplier alternatives were	supplier capabilities reviewed by				
	evaluation	technical and process	reviewed based on	a small team of technical experts,				
		capabilities were	questionnaires or other	who recommended selection				
		reviewed by technical	high level materials	without looking at alternatives				
3	End user	end users were directly	end users reviewed the	end users were not involved in				
	involvement in	involved in evaluation of	results of the evaluation	the supplier evaluation				
	supplier eval.	the supplier						
4	Executive (or	executives have	executives have made	executives have made a written or				
	customer)	expressed no written or	written or verbal	verbal mandate of a particular				
	influence	verbal support for any	comments favoring a	supplier or customer has				
		particular supplier	particular supplier	selected the supplier				
	Number of	several qualified	just a few qualified	this candidate is the sole potential				
	supplier	suppliers from which to	suppliers	supplier, thus evaluation is almost				
	candidates	choose		irrelevant; or all supplier				
	Oalaadaa	d I - C I	4	candidates have poor prior				
6	Selection	the evaluation and	the evaluation and	no documented evaluation and				
	process	selection process follows	•	selection process was used				
	documentation	an approved,	based on external					
		documented organization						
7	Evaluation criteria	supplier evaluation	supplier evaluated using	no evaluation criteria used in				
		criteria consider defined	pre-defined evaluation	supplier selection process				
		requirements	criteria					


Management of Product Risks

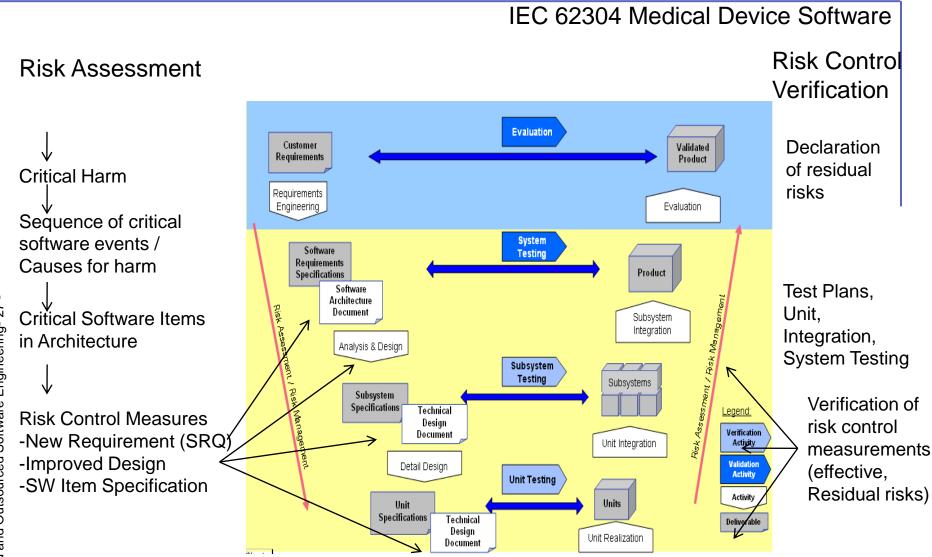
Risk Areas

- IT Security Risks
- Product Safety Risks

Product Safety Risks

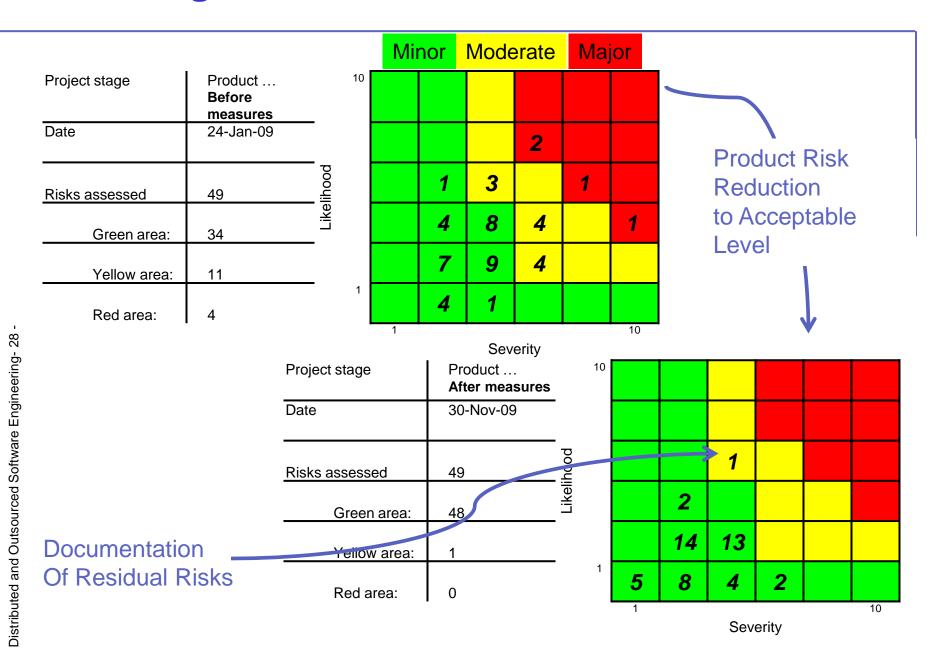
- What are possible hazards?
 - Major: May lead to death or serious injury
 - Moderate: Non-serious injury is possible
 - Minor: No injury or damage to health is possible
- Software Risk Management Approach

Hazard identification


- Software and Product IT-Security hazards cover
 Confidentiality, Integrity and Availability aspects, e.g.
 - A medical Instrument can be run with expired maintenance or reagents.
 - Data storage exhausted e.g. harddisk is filled with logfiles
 - Wrong or unclear patient result presentation
 - Timing-, multitasking-, jittering-problems or deadlocks occur
 - Access to patient/personal data for unauthorized people
 - Instruments or databases are accessed by unauthorized persons via the intra- or internet
 - Service passwords are static and become widely known
 - Audit trails and logfiles can be edited

Product Risk Management

- Same process as for Business or Project Risk Management
- Product Manufacturer is held responsible for


Whole product	Formal Product Risk Management Process
All integrated parts	
Inhouse developed software	X
Outsourced development for the purpose of the product	X
■ Software already available (OTSS, legacy code)	Not possible, OTSS already exists

Software Risk Management According to IEC 62304

Distributed and Outsourced Software Engineering- 27

Risk Mitigation Documentation

Off-the-Shelf Software (OTSS)

- Analysis and Documentation during Design:
 - Make vs. Buy Analysis
 - Software Package Selection and Purchasing Control

Steps

- Analyze Level of Concern: Worst case hazard severity if software malfunctions:
 - Minor: document hazard mitigation actions
 - Moderate: Describe and justify residual risks (Basic documentation)
 - Major: Special documentation demonstrates risk reduction

OTSS Risk Documentation

- Basic Documentation
 - Why the OTSS is appropriate for use in the product
 - Used versions, patches, drivers, ...
 - OTSS requirements for the product
 - Testing appropriate for hazards
 - Configuration Management for OTSS deliverables
- Special Documentation (major hazards)
 - Provide assurance regarding the OTSS development process by the vendor
 - Demonstrate that vendor's Verification & Validation are adequate
 - Demonstrate maintenance and support of the OTSS will be adequate